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MATHEMATICAL EXPRESSION
FOR

DROP SIZE DISTRIBUTION IN SPRAYS

BY

H. Hiroyasu

SUMMARY

Several mathematical expressions for the distribution of drop
sizes in liquid sprays have been proposed by different researchers.
These variQus distributions can be classified into two main types,
the logarithmic normal distributions and the Chi-square distribu-
tions. 1In this paper, the theoretical soundness of applying these
two main types of distribufzg;/gzgzgiaﬁgﬁzg-5;;;/size distributions
is discussed and several figures that are useful when applying them
to spray data are included. It is shown how some empirical drop
size distributions can be derived from the general Chi-square
distributioh function. This suggests that it may be possible to
relate the parameters in the Chi-square distribution equation to
the fundamental mechanisms of spray formation. It is concluded
that the Chi-square distribution fits the available spray data
well,'can be graphed fairly simply, and furthermore if the para-
meters § and ¢ are defined, several expressions of distribution
(volume, number, cumulative, etc.) can be found and several types

of mean diameters can be calculated.
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MATHEMATICAL EXPRESSION
FOR
DROP SIZE DISTRIBUTION IN SPRAYS

i by
H. Hiroyasu

INTRODUCTION

Various mathematical expressions for the distribution of drop
sizes in liquid sprays have been proposed by different researchers.
. For example, the Rosin~Rammler distribution, the Nukiyama-Tanasawa
distribution, the logarithmic normal distribution, the upper-limit
' logarithmic normal distribution and the square root normal distrib-
ution are widely used for this purpose. Unfortunately, we cannot
. determine which expression is theoretically best because we have
no accurate method of measuring the size distribution of drops and
there is little knowledge of the mechanism of droplet breakup.
l Under these circumstances, a suitable expressionshould (1) fit
the data adequately, (2) permit easy calculation of mean sizes and
. other mathematical parameters of interest and (3) give an insight
into the fundamental mechanism of droplet production.

l This paper will discuss how well the various distributions
satisfy the above requireoments.

TIE CONCEPT OF THE DISTRIBUTIONS

l There are various experimental methods of measuring the size

of liquid drops sprayed from a nozzle. By these experimental

—

' mcthods we typically characterise a spray either by number versus

diameter or by volume versus diameter (for some special cases, there

is also a method for characterizing by surface area).
Let us first define the terms we shall use in describing

the number and volume of drops in a spray. Speaking first of the

number of droplets in a spray we define:

)
)

R —




1. The total number N of droplets in a spray, is mathe-

matically defined as

o

N = j fn(x) dx (1)
0
where fn(x) = %% and is a mathematical expression for the

number of drops of a size x in a given size range dx.
2. The cumulative number n of dropl=ts less than a given
size range x, is mathematically defined as
X
n = S f(x) dx (2)
0
Likewise the number of droplets of a size larger than x will
be given by

oo

N - n = J. £ (x) dx (3)
X
3. The incremental number An of droplets in a size range
between
: AX AX
X—T and X+T.
4, In many cases we shall wish to normalize these terms

and shall use the * superscript to indicate normalization, i.e.,

(s o]

* *
N = fn (x) dx = 1 (4)
0
The cumulative number fraction is
X
*
n* = S fn (x) dx (5)
or 0
* * *
N*-n = fn (x) dx (6)
X

We will follow the same symbolism for the volume V of N

droplets in a spray using fv = dv/dx to indicate the mathematical

expression for the volume of the drops in a size range dx

|
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vV = So fv(x) dx | (7)
X
v = SO fv (x) dax (8)
V~-v = j fv(x) dx ‘(9)
X

The normalized expression is

[ o]

* *
\Y = s fV (x) dx = 1 (10)
0
The cumulative volume fraction is
* ) *
v = Sy f  (x) dx (11)
0 v
or o
* * *
vV - v = j. fV (x) dx (12)
X

where the subscript v indicates a volume function as opposed to
the number function fn. Note that fn and fV are related by
T 3
= I 3
£, g x £ (13)
In some cases the cumulative volume fraction v is expressed
as a percentage and called the percent passing volume qguantity.
The term percent passing volume quantity comes from the size of
solid particles that would be passed through a sieve which has
opening of size x. By analogy the quantity v* - v* is sometime

called the residual volume quantity.
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THF CONCEPT OFF MUAN DTAMETERS

In many spray problems it is desirable to work only with
average diameters instead of the complete drop size distribution.

There are at least six types of mean diameters which may be
usced to represent a given spray distribution. This is because
a spray has four characteristics, that is, the number of droplets,
and the diameter, volume and surface area of each droplet.

Using these characteristics of a spray, the general equations

for the various types of mean diameters can be written

o

[ xT £ (x)dx 1
0 n

(14)

I xP £ (x)dx
0 n

where g and p may take on values corresponding to the characteristic
investigated.
Some of the more important mean diameters are listed in Table 1

with the corresponding values for p and q.

TABLE 1 - MEAN AND MEDIAN DIAMETERS

q p Name of Mean Diameter
§10 1 0 Diameter - Number Mean Diameter
§20 2 0 Surface - Number
§30 3 0 Vo lume - Number
§21 2 1 Surface - Diameter
§31 .3 1 Volume - Diamcter
§32 3 2 Volume - Surface Sauter's
§nm Number Median Diameter
ivm Volume Median Diameter
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In addition to mean diameters, median diameters have also
been defined. They are convenient average sizes because they
can be cvaluated immediately at the 50 percent mark of the cum-
ulative distribution curves.

Two median diameters are commonly used. The first, inm’ is
the number median diameter, i.e., the diameter of a drop such that
half the total number of drops have diameters greater and half

have diameters lecss than inm' or mathematically using Egs. 5 and 6

o L]

= = = f .
i Jo rfx) x Ji IJX) % 2 J *)ax (15)

o n
nm

The second, Xom ! is the volume (or weight) median diameter, i.e.,
the diameter of a drop such that half the total volume is composed
of drops with diameters less than ivm and half is composed of

drops with diameters greater than Xom? defined mathematically by

X o0 o0

1 vt 3
5 = J X~ f(x)dx = J_ x3 f(x)dx = L j x3 f(x)dx (16)
0 n < n 2 0 n
vm

LOGARTTHMIC-PROBABILITY DISTRIBUTION

Most distribution functions have been dcfined inductively
from many experimental results. To be useful, a distribution
function should be well known mathematically. A normal probability

distribution fits this criteria.

The normal distribution function can be adapted to give a volume
distribution for sprays

+y 2 ‘
1 - -—
Flx) = —L exp| X x)T (17)

Y29 o 207
where o is the standard deviation and xT is called the character-
- . * )
T721nq parameter; f(x) is maximum at x = x1

V -
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ft is tound that this function gives a very poor fit to many
cexpevimental droplet distributions since they are ordinarily dis-
tributions somewhat skewed from the normal distribution. Conse-
quently, it was suggested that the distribution be skewed from
the normal function by using the logarithm of x as the variable.
The first to apply the logarithmic-normal distribution to a prob-
. *
lem of drop size distribution was Galton.l .
This typical logarithmic normal representation of the volume
size distribution is
av’ s §2y?
v ¢ -0y *
4= = — e = f (X) (18)
dy o v
where
X
y = 1n(—T)
X
so= 2
2 o
The cumulative volume fraction is determined by integrating
cquation (18)
7 5
* -
v X J e”? az (19)
/n -~ )
where
A = (Sy
: 0 Z
2 2
* - -—
v=7l—J’ezdz+i_-_J-ezdz (20)
n )/'“ .
— X 0
1
= 3 + crf(z)

where orf(z) is the error function, or probability integral, of z.

*Numbers refer to references at the end of the paper.
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The logarithmic normal number distribution can be shown to
be
* oy v 2
dn _ N 26
o= 2 e . (21)
dy /7

b

For thec x' in the log-normal distributions, Theodore Hatch and

Sarah P. Chate2 have used the geometric mean diameter while B.

Epstein3 and F. Kottler4 have used volume median diameter im'+

+
Theoretically, however, we should only use the mean diameter for x .
From cquations 4) and (18) plus some algebra it can be shown that

the general cxpression of mean diameter for this distribution is

3 =xVexp |BXD 6| (22)
“ap 487 |

In the following discussion, we shall use the volume median

. - I
diameter xm for x .

Fig. 1 shows the variation of volume distribution dv/dy
with dimensionless diameter (x/im) for the various values of 8.
From this figure, it is apparent that the logarithmic-volume dis-
tribution has a maximum point at the median diameter im‘

As it is simpler to represent volume distribution versus
dimensionless diameter (x/§m) rather than volume distribution
versus the logarithm of the dimensionless diameter, we replace

dy = l/(x/ﬁm)- d(x/im) in equation (18) to obtain

2

x X - $2 (In(x/X_))
v S M m (23)

d(x/im) Yioox

TIn order to write simpler expressions we hereafter write

x, to mean the same as was previously written X om®
T
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The variations of the volume distribution dv/d(x/im) with
dimensionless diameter (x/xm) arc shown in Figure 2 for different
valucs of .

I'igure 3 is an example of a plot of cumulative volume on
the probability scale versus log (x/im). If the data follow
the logarithmic-normal distribution, they will form straight lines.

‘ The value of § represents the degree of uniformity of the
drop size in the spray, as illustrated by Figures 1, 2, and 3.
The value of 6 can be calculated from the slope of the lines in
Figure 3, that is

. - . 0.394 _ 0.394 (24)

10g; o (xg¢/%p) logy g (x/%10)

where X990 and Xy are the diameter for a cumulative percentage
of 90 and 10 respectively.

Although the plot of an exact logarithmic-normal distribution
will be a straight line on log-probability coordinates, typically
the experimental data deviate from a straight line at large values
of Xx. 1In an attempt to develop a different function that would
not have this problem, Mugel and Evans5 suggest an upper limit
log-normal distribution which used y = ln(ax/(xmax—x)) instead of
y = lIn(x/x*) in equation (18), where X ox is the maximum diameter
droplet in the spray.

Figure 4 illustrates the application of the upper-limit
equation to Ingebo's13 data. Here, xmax is determined as follows.5
Plot the data as P against x, drawing a smooth curve to fit these
points. From these curves read the 10th, 50th, and 90th percen-
tiles, xio, Xego = §m’ and Xg,. Then calculate x__  from the
formula

Xgo (Xgg + X19) — 2:Xgq X
max 50 2
X50 - X

90°*10




14
The paramcter a is readily determined from the line repre-
senting the distribution. Since y = 0 at the 50th percentile,
(where Xgog = Qm’ the volume median diameter), we have here
*max ~ —m
a = ~ (26)
X
m
The paramcter § is determined by the slope of the line,
hence by any two points on it. Let us designate the coordinate
on the log scale by u;
X
u =
X - X
max
Then if we read the values Uy, and Ug at the 90th and 50th per-
centiles, we find
5§ = 0.394 (27)

logy g (Ugy/Ugg)

CHI-SQUARE DISTRIBUTION

Another distribution function which can be derived from the
normal distribution function is the Chi-square (x?) distribution.
t t

In general, if t t¢ are standardized normal variables

17 Eor Eys e
and we define
2 2 2 2 & 2
2 - =
X = tl + t2 + t3 + ... t¢ .Z tl (28)
i=1

then x< has the distribution

E(x') = 1 )% e ? a? (29)

2*/2 1t (4/2)

where I+ is the Gamma function in the above equation



which is known as the x¢ distribution with ¢ degrees of freedom.
As an illustration of the meaning of the x? distribution con-

sider a target at which we have fired a very large number of

arrows., If we call the non-dimensional rectangular coordinates of

a point on the target (tl’tz) as in Figure 5-a we can expect that

the probability of a hit depends upon the radius, x, from the

target and that the frequency versus distance curves will follow

a normal distribution for both tl and t, as in Fig. 5-b. Note that .

if the probability of a hit is the same on the t

1 and the t, axes,
the curves in Fig. 5-b

2
will fall on top of each other, If the prob-

ability of a hit is different between the two axes, the curves for .
t1 and t2 will not coincide as illustrated in Fig. 5-b.
9 2

X© = tl + t22 as is shown in Fig. 5-a, the frequency versus x?

curves can be expected to follow a Chi-square distribution function
with degrees of freedom ¢ =

Fig. 5-c.

Now if

2 (Eg. 29) and have a shape similar to

Another example of a form of x2 distribution function is the

familiar Maxwell distributon of molecular velocities6

with degrees
of freedom ¢ = 3.

The x?2 distribution function has been applied to some problems
of the distributions of droplets in sprays.7

related to the droplet diameter x by

x> = 2bx",

In this case, x is

where ¢, b, and 8 are the distribution constants. Thus for the

volume distribution the following equation is presented using Eq. 27

3}

[ X
dv " 1 2 . 2
—_ = ()(2) e (30)
ay’ 2472y (4 /2)
Since x*¢ = 2bx8, equation (30) becomes
¢
5 ¢ g
2 5B8-1 -bx *
oo b e = g () (31)
% c{9/2)
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When 8 = 1, equation (31) becomes
* L %_l
2 -bx
b
v - B i e . (32)

dx I (¢/2)

Using p=1 has provided a good fit to much experimental data, Equation
(32) is a simple and a useful equation for drop size distributions.
The x? distribution is always highly skewed for small values
of ¢, beccomes more symmetric when ¢ increases, and approaches a
normal distribution in shape for large ¢ as shown in Figure 6.
The number distribution corresponding to the x? equation can
be obtained from Eq. (31) by using the relationship between number

and volume as given by Eg. (13) to give

) 3
(% - =) o)
* 2 B 3 - 4 B
dn  _ EEL}T‘”T?‘ %2 eTPX" (33)
dx r (-2‘ - -é-)
When g = 1, Eg. (33) becomes
(| _ i _
dn* b(§ 3) 2 4 -bx .
= = 4 X e (34)
dx r(% - 3) '

*
The cumulative volume fraction v and the cumulative number
*
fraction n are determined by integrating Eqs., (B0) and G3),

respectively to give

_X
* Xz l '%—l 2
v o= (x2) e d(x?) (35)
0 29?1 (s/2)
v T o (¢/2L//F(¢/2) (36)
2bx "
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and
*o ¢ _ 3 3
n. o= T & - 75//1( - 2) (37)
oot 2 B 2 B

where rx(Q) is the incomplete gamma function, as defined by

X
r () = s z2 1 e % ax g > 0
X 0 0 <« X <
Lxtensive tables of the ratio I(x,2) = FX(Q)/F(Q) are given in

"Tables of the Incomplete Gamma Function."8

Then we can easily obtain the values ofn* and\; from both the
Tables of Chi-Square Distributions and from Tables of the Incomplete
Gamma Function.

If we wish the commonly used Sauter's mean diameter §32, the

value of b in Egs. (31), (33) and related equations can be shown
to be

B B

b =] Lte/2) | 11 (38)

rd - 2| [

On the other hand, if we wish the volume median diameter X
the value of b becomes

2
b = [f_m]{ig;] (39)
2 X0

where sz is median x? value which is discussed later.

ml

If we introduce the dimensionless diameter as x/§32, then
Eq. (31) may be written

N|-e

"6l 2op-1 ) .
*
dv o Irte/2)] x I ($/2) (x/%5,)

\ XY:

X exp| - (40)
a(=) [r(i _ l)] T(¢/2 - 1/8)
X35 28

X3
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Sincce in many cases $ = 1, ¢ is usually the only distribution
constanl.  Thus, Fig. 7 shows the variation of dv/d(§ ) with dimen-

X
sionless diamcter (x/§32) as given by Eg.40 for varigﬁs values
of ¢. The curves on this figure give a maximum point at x/}—{32 =1,
that is, at Sauter's mean diameter. For this reason the form of
the x? distribution is very convenient.

Next, we will develop a dimensionless expression using the
volume mean diameter §m To obtain the median diameter, we define
the mean value of x° for each ¢ in the x? distribution by the

following equation

o 9 _xZ
2 1 2

1 1 '
: (x2) e d(x?) = = (41)
iz 24725 (4/2) 2 |

m

Values of Xym are listed in x° distribution tables.

Thus, the relation of the median diameter to Sauter's mean diameter
may be obtained from Egs. (38) and (39)

OB U OB G N NI G A OF W OB G S S5 W W S . s

% X2 1/8
no [ m] r(s/2 - 1/8) (42)
X3 2 T (¢/2)
Table 2 shows the above relation for several values of ¢ when £ = 1.
TABLE 2
2 X /% 2 ' /%
¢ X m/2 Xm/x32 ¢ X m/2 Xm/x32
4 1.678350 1.67835 14 6.66965 1.11161
5 2.175730 1.45092 15 7.16945 1.10299
6 2.674060 1.33703 16 7.66925 1.09561
7 3.172905 1.26917 17 8.16905 1.08921
8 3.672060 1.22402 18 8.66895 1.08362
9 4.171415 1.19183 19 9.16880 1.07868
10 4.670910 1.16773 20 9.66870 1.07430
11 5.170500 1.14900 21 10.16860 1.07039
12 5.67015 1.13403 22 10.66850 1.06685
13 6.16990 1.12180 23 11.16845 1.06366
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Eq. (31) may be written with (x/§q) by using Eg. 39 for b,

>3

oo /20 Sep-1 2
X X 12 X 6 -
o b Mm] [§ ] exp[ﬁ(*_m)(§i> ] d(x/%) (43)
I’ (4’/2) 2 Xln 2 Xm

If ¢ is defincd, Xym is obtained from Table 2.

Fig. 8 shows the variation of dv/d(x/im) with dimensionless
diameter (x/xm) for various values of ¢.

The value of ¢ is related to the degree of uniformity of the
drop sizes in a spray, and experimental data shows ¢ is a constant
for a given nozzle over a wide range of operating conditions.

When ¢ = 12, volume distribution curves for various 8 are
shown in Fig. 9. The values of § are also associated with the
degree of dniformity of drop size and it is quite sensitive to
variations in drop size distribution.

Fig. 10 shows the cumulative volume distribution curves for
various values of ¢. A plot of cumulative volume distribution on
a Chi-square scale against a linear (x/>_<m)8 scale should yield a
straight_line for # = 1 as shown in Fig. 1l.

Analysis of experimental data on a liquid spray for number

versus diameter distribution is easily made by converting equation
(33) into the form

$ -3
(- 2
Log ol — ~— . dn) . log L2 - 2P (44)
- -4 dx ¢ 3 2.3
2 rz - 3)
X 2 8
A 1 dn . B . .
plot of 1log ¥ . against x~ should yield a straight
=+ -4 dx
2
X

linc with slope equal to b/2.3. Here, the values of ¢ and B are
determined by trial and error to give the best alignment of data
points. In actual practice, construction of straight line plots

from original data is quite simple, as will be illustrated later.
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*
If we have data on the volume distribution fraction, £, » we

can put Eq. (31) in the form
, . 2
1 dv g p¢ b B
log ——— = log —— - — X (45)
10[ ;-B-l. dx ] 10 [r(¢/2) 2.3
X
. 1 . .
which expresses logj—g . g¥ as a linear function of x".
5+ 8-1 x

X
Finally, the general equation for the mean diameter gqp for

the x" distribution function is obtained by substituting Eg. 33
into Eg. 14 to give

q-p LR .

- _ 5 B . I(u/2 +(g-3)/8) 6)
4P [(¢/2 +(p-3)/B)

When v = 1, this simplifies to

S
= ol ve2 g 3] 9P
qu = 5 i (47)
F(e/2 + p - 3)
If ¢ = 2 in a x? distribution equation, Eg. 31, it becomes
10

the Rosin-Rammler equation which was presented by Rosin and Rammler

for application to powdered materials. That is

av® _ b -1 —be
ax 3 X e (48)
x .
* dv* —be
= = = 49
v = dx e (49)
0
* % -be
V -v = 1 - c (50)
where ¢ and b are distribution constants. Thus the Rosin-Rammler
cquation can be obtained from the x4 distribution function.
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whon é'ﬁ s« + 4, the x* distribution cquation becomes the
Nuk iyama=Tanasawa cquation which was cmpirically obtained {from

cextensive experimental data on drop sizes in sprays formed by

air atomization by S. Nukiyama and Y. Tanasawa.ll That is, from
Egs. (31) and (33)

a+4 8
* B a+3 -bx
v B x e » (51)
p(g_iﬂﬁ)
B
o+l
dn* g b ° o ~bx®
ax = T o4 * e (52)
r( o + 1 )
B

where o, B, and b are distribution constants. Thus, the Nukiyama-

Tanasawa equation can also be obtained from the x2 distribution function.
Further, when ¢/2 + 4 = r, and B = ~1, the x?distribution equation

Eq. (33) becomes Griffith comminution equation which was derived

by L. Griffitht? by applying the theory of probability to the

molecular surface energy in an elementary comminuted system,
that is

dn _ . .-r -b/x
&% = k' xTe (53)

where the values of k', r, and b can be determined from experimental
data. Note that

_br—l

k! = =
r(r-1)

so that k', r, and b are related and there are really only two
independent variables.

DISCUSSION AND COMPARATIVE FIT OF DISTRIBUTION EQUATIONS

The log-normal distribution and the x? distribution can be
comparad dircctly in terms of their (a) mathematical characteristics

(b) numcrical distribution (c¢) volume distribution and (d) cumulative
volume distribution.
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Froaguency, cumulative and mean diametoyr axproasions fov the
Poy normal distuibantion and chi smare distribat ion yveospact ively
Are Listed in Tabte b Dimensitonless expressiions of el sguate
distribution are also shown in Table 4., The value of the dimen-
sionless distribution constants for various values of ¢ and Bg=1
are shown in Table 5.

‘As discussed previously, both distributions can be obtained
from normal distributions. The log-normal distribution is skewed
into the normal shape by using a logarithmic abscissa, while the
x° distribution is formed from several normal distributions. The
fact that the x? distribution may be given the form of empirical
drop size distribution equations suggests that it may be possible
to relate the parameters in the x? distribution equation to the
fundamental mechanisms of spray formation.

The log-normal distribution has two parameters ¢ and im’ and
dimensionless expressions can be made easily with im' The x? dis-
tribution has three parameters ¢, B, and b (usually, for sprays B=1).
While the x2 distribution can also be made nondimensional by using
im’ it has the advantage of also being conveniently normalized
using Sauter's mean diameter (x32). This is very convenient be-
cause Sauter's mean diameter has a useful physical meaning and is
an important value for combustion and chemical reaction calculations.
The nondimensional volume expression using §32 always has its
maximum point at x = X3q-

In Fig. 12, a log-normal curve (Fig. 2) is compared with a
x?/ curve (Fig. 8) of the same maximum height. Because of its
broader peak, its gentler slopes near the peak, and its lower tail,
the distribution frequently provides a better fit to experimental
data than thc log-normal distribution.

The upper-limit log-normal distribution provides a good fit
to some experimental data. However, this distribution is difficult
to apply because of the complications involved in determining ¢
and X ax for each set of experimental data. Because of these
difficulties, the upper limit log-normal distribution is not a

commonly used distribution.
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Chi-Square Distribution
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~ where

A' =

TABLE 4

Dimensionless Expression of Chi-Square Distribution
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%32 X327

X 8 X
exp ( 'B'<:—*- ) d (=)
X32 X32
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¢
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TABLE 5

The Valuce of Dimensionless Distribution Constants ghown in
Table 4 with Various ¢ (8 = 1)

2374.6056

¢ A Al B! C D o D'
7 0.8921 7.4338 . 1.0050 3.173  17.1208 3.173
8 3.0000 13.5000 . 3.6721 3.672  30.3032 3.672
9 7.3885 24.1360 . 9.6134 4.171 53.1658 4.171
10 16.0000 42.6667 . 21.8174 4.671  92.6393 4.671
'11 32.3143 74.7845 . 45,7293 5.171 160.5360 5.171
12 62.5000 130.2086 91.1493 5.670 276.9398 5.670
"13 117.4071 225.4964 175.5492 6.170 475.9812 6.170
14  216.0000 388.7988 329.8080 6.670 815.4350 6.670
.15 391.2615 667.9124 . 608.1952 7.170 1393.1954 7.170
16  700.2918 1143.8076 . 1105.4847 7.670 7.670
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The x¢ distribution can conveniently be expressed for
number frequency distribution, volume frequency distribution
and cumulative distribution, but the log-normal distribution
can be conveniently expressed only for cumulative volume dis-
tributions.

For example, Table 6 presents Ingebo's datalB. He mea-
sured number versus diameter of droplet for impinging jets in
a rocket combuster. The data of the third column of Table 6

n, are measured directly. From this, the data of the fourth
column of Table 6, v, are calculated using the data of droplet
number, i.e., third column. Fig. 13 shows these results for
Run 4. From curve A it is apparent that the number frequency
curve is a fairly smooth curve but the volume-frequency dis-
tribution, curve B, is irregular, i.e., the data are scattered.
Because of the scattering, it is very difficult to analyze
correctly for volume distribution data. Curve C of Fig. 13
is residual volume distribution data obtained from the volume
fraction data. This is a fairly smooth curve, but because it
was obtained from too small a sample, each data point has a
large uncertainty.

The log-normal and the upper limit log-normal distributions
are suited only to cumulative volume data while the x? distribu-
tion can be applied directly to number frequency data as well as
to cumulative volume data. For this reason the x2 distribution
is the most generally applicable.

Figs. 14, 15, and 16 show Ingebo's data plotted for log-
normal, upper limit log~normal and x? distributions. Since the plot
for the log-normal distribution is not a straight line, these
data do not follow the log-normal distribution. While the x?2
distribution shows some scatter, it does have the previously men-
tioned advantage of being able to work with volume or number
distributions.

Data for one run with a small air atomizing nozzle are given
by Houghton14 as shown in Table 7. As shown in column 5, 99% of

the number of droplets fall in the range of 2 ~ 20, in diameter
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TABL 0O
FEXPERIMEN'TAL RESULTS OF TNGP:B()(lJ)
(L) Run 4
*ok An 1 X
Xu /\xu An Av V*-v % Nx2 xmax_x
13.75 12.5 60 0.0002 1.0000 1.2675%x10 > 0.0617
26.25 12.5 717 0.0285 .9997 4.1537x107° 0.1223
38.75 12.5 319 0.0603 L9712 8.4830x107° 0.1957
51.25 12.5 291 0.0441 .9109 4.4227x107° 0.2763
63.75 12.5 127 0.0515 .8668 1.2475x10°° 0.3686
76 .25 12.5 76 0.0305 .8154 5.2196x10"/ 0.4752
88.75 12.5 104 0.0735 .7849 5.2710x10 "’ 0.6000
101.25 12.5 67 0.0589 .7114 2.6090x10"/ 0.7475
113.75 12.5 52 0.0735 .6525 1.6043x10" 7 0.9251
126.25 12.5 70 0.1130 .5790 1.7532x10 7 1.1429
138.75 12.5 38 0.0860 .4660 7.9835x10”8 1.4164
151.25 12.5 19 0.0523 .3800 3.3154x1078 1.7698
163.75 12.5 19 0.0708 .3277 2.8278x10” 8 2.2444
176.25 12.5 19 0.0838 .2569 2.4417x108 2.9152
188.75 12.5 15 0.0847 L1731 1.6806x10” 8 3.9356
201.25 12.5 4 0.0284 .0884 3.9426x10 2 5.6754
213.75 12.5 4 0.0343 .0600 3.4950x10" 2 9.3097
226.25 12.5 3 0.0257 .0257 2.3433x107° 21.6300
. _5 o =—0.0473x
X = 236.71 u dn" = 5.3x10 X e dx
max
Xm = 137 u
XlO = 55 u
x99 = 204 u




TABLE 6 cont,

(2) Run 11
X, An Av V*~-y* An —lj —E
Ax Nx Xmax_x
13.75 1070  0.0095  1.0000  1.5518x10° % 0.09776
26.25 681 .0280 .9905  2.6864x107° 0.20484
38.75 345 .0583 .9625  6.2453x10°° 0.33506
51.25 343 .1068 .9042  3.5498x107° 0.49685
63.75 167 .1095 .7974  1.1169x10°° 0.70325
76.25 121 .1183 .6878  5.6575x10 ' 0.97569
88.75 86 .1453 .5695  2.9681x10"/ 1.35187
101.25 68 .1575 .4242  1.8031x10’ 1.90499
113.75 33 1157 .2667  6.9327x10°° 2.79828
126.25 21 .0946 .1510  3.5814x10 8 4.484902
138.75 4 .0253 .0564  5.6480x10° 8.86580
151.25 4 .0311 .0311  4.7537x10”°  48.0159
, 4 2 -0.0749x
Xmax = 154.4 dn = 2.1x10 X e dx
)—(m = 95 !
ilo = 52 .

igo = 132 p




|

(3) Run 23
X An
"
13.75 78
26.25 100
38.75 61
51.25 39
63.75 18
76.25 12
88.75 8
101.25 3
113.75 1
X =
max
X =
m
%10 =
%90 =

Av

0.0187
.0656
.1360
.1625
.1573
.1710
.1628
.0837
.0425

135.1 u
74 u
40 u

105 u

TABLE 6 cont.

V*-v¥

1.0000
.9813
.9157
.7797
.6172
.4599
.2889
.1261
.0423

*
dn

An 1

Ax Nx2

1.0316x10
3.6281x10
1.0156x10
3.7122x10
1.1072x10
5.1600x10
2.5594x10
7.3156x10

1.9322x10

-—
-—

4.2 x 10

4
5
5
6
6

7
7

8
8

4

X

2

max

0.11331
0.24116
0.40218
0.61121
0.8935

1.29567
1.91478
2.99113
5.32787

-0.0944x
e
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dx



10
15
20
25
30
35
40
45
50
60
70

TABLE 7
ATOMIZATION IN A SMALL AIR-ATOMIZING NOZZLE
Data of Houghton(l4)
Axu An An/NAX n* An/xNAx
2.5 390000 0.16275939 57.43 0.081379695
5 340000 0.07094640 82.47 0.014189280
5 165000 0.03442987 95.35 0.003442987
5 40200 0.00838837 98.31 0.000559225
5 11680 0.00243722 99.18 0.000121861
5 4970 0.00103707 99.54 0.000041483
5 2160 0.00045072 99.70
5 1730 0.00036099 99.83
5 1080 0.00022536 99.91
5 650 0.00013563 99.96
7.5 430 0.00005982 99.98
10 350 0.00003652 99.99
10 220 0.00002295 100.00
-0.25x%
dn = 0.062 x e dx
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while only 1% Fall in the range of 25p A 70, in diameter.

The data of 994 of droplets are plotted as shown in Fig. 17,
wilh the result that the data are found to agree in range of
2 v 25iquite well with a x” distribution for dn/dx when ¢ = 10,
and b = 0.25. The the distribution equation is expressed by

dn*
dx

The drop size distribution produced by a particular swirl
type nozzle has been measured by Edward Ricels. He took droplet
pictures with 25 times linear magnification using a fluorescent
technique. The number and size cof droplets on the photographs
were determined with a flying spot automatic counter.

Data for ethanoll® is given in Table 8. The data were analyzed:
using the x? distribution by the authors. As expected, the data
follow the same dimensionless equations even if the injection

pressure 1is changed, as shown in Fig. 18, i.e.,

-0.5 -Z.5x
dn* = 0.8921(:’—‘—) e a(=)
¥32 ¥32

Thus for this nozzle the property combination the distribution
is determlned only by the value of Sauter's mean diameter (x 2),
and x32 is found to be a function of the injection pressure.
This suggests that for a given nozzle and fluid property com-
bination the distribution equation is determined by the value
of X3, and that X3, might be expected, in general, to be a
function of the injection pressure.

Hiroyasu and TanasawalG, using a new type of drop size
analyzer based on sedimentation, measured the drop size distribu-
tions produced by various types of Diesel injection nozzles.

The droplets sprayed from a nozzle were allowed to fall
dowr a settling tower onto and automatic recording balance to
give weight versus time data. Then diameter versus falling time
data were usced with the weight versus time data to calculate the
cumulative weight versus diameter distribution. Then this data

was analyzed using the cumulative volume x? distribution expressions.



X
u

12.07
17.07
24,14
34.14
48,29
68.29
96.57
136.57
193.14

12.07
17.07
24.14
34.14
48.29
68.29
96.57
136.57

dn*

dn*

TABLE g

DROPLET DATA OF SWIRL ATOMIZER
OBTAINED BY EDWARD RICE

AX
u

4.14
5.86
8.28
11.72
16.57
23.43
33.14
46.86
66.27

= 0.37 x

4.14
5.86
8.28
11.72
16.57
23.43
33.14
46 .86

= 0.48 x

An

5260
2278
3022
1270
1166
647
222
114
19

6206
2258
2667
730
509
127
19

-0.5

e

An/NAX

9.0765
2.7771
2.6073
7.7412
5.0270
1.9727
4.7856
1.7379
2.0482

~.43x

e dx

1.1976
3.0784
2.5733
4.9762
2.4541
4.3304
4.5804
1.7049

-0.72x
dx

- A T -

KoXmooX X KR X XX

(15)

0

3.150
1.147
1.278
4.521
3.489
1.630
4.695
2.030
2.849

4.156
1.271
1.261
2.906
1.212

- 3.577

4,493
1.991

E T T T T - -

E I - R T A

X 'SAn/NAn

10

10~
10~
10~
10~
10~

10

10~

-1

w N NN

32



12.07
17.07
24.14
34.14
48.29
68.29
96.57

dn

AX

4.14
5.86
8.28
11.72
16.57
23.43
33.14

0.59 x

TABLE 8

(continued)

An

7752
2600
2319
534
263
37

-0.5 -1.09x

An/NAx

1.386
3.285
2.074
3.373
1.175
1.169
4.468

dx

X

KX X XX X

10°

10

10”
10~
10~
10~
10~

-2

DWW N

4.809
1.357
1.016
1.970
8.155
9.656
4.383

X

L T R
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P = 100 psi

An/NAX

1071
1071
1071
1072
10~
10~
10~
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Fig. 19 shows the offect of rotational speced of the pump on
Lhe size distribution of drops produced by a throttle nozzle.
From these curves we can obtain the distribution parameters ¢ and
im' Having ¢, the value of b can be obtained using Eq. 39 and
Table 2. The results of this experiment showed that even if
operating conditions are changed, the distribution parameter ¢
does not change. It was glso found that the median diameter X
of sprays dccrcascs with increase in rotational speed, i.e., an
increcase of injcection pressure. The expression obtained for the

drop sizc distribution of sprays produced by a throttle nozzle is

3 —3.67(x/§m)

av* = 30.30 (=) e a(x/x )

X
m
Similarly, the results obtained for the pintle nozzle are shown

in Fig. 20, and the drop size distribution of sprays is expressed
by

3.5 -4.7(x/x_) _
av* = 53.17 (=) e oalx/x)
X

m

Fig. 22 shows the effect of viscosity of fuel on the size
distribution of drops. These results show that the effect of
viscosity of fuel is larger than it is usually expected to be.

When the viscosity of the liquid becomes larger than 10 cp,

the values of ¢ decrease with increase in viscosity as shown in
Fig. 22 and ¢ takes values of ¢ = 8 for yw = 10 cp to ¢ = 4.4 for
u = 200 cp.

As has been illustrated in the above examples, experimental
data show that the size distributions produced by a number of spray
producing devices follow the x2 distribution reasonably well. This
distribution can be graphed fairly simply, and furthermore, if the
paramcters  and ¢ are defined, several expressions of distribution
(volume, number, cumulative, etc.) can be found and several mean

diamoters can be calculated.
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